

High Throughput Analysis of a Number of Common Drugs using a TSKgel ODS-140HTP, 2.3µm Column

Atis Chakrabarti, Shigeru Nakatani, J. Kevin O'Donnell Tosoh Bioscience LLC, Montgomeryville, PA

- Reversed phase liquid chromatography (RPC) is an analytical technique widely used in the R&D and QC departments in the drug industry.
- An estimated \$64 billion of pharmaceutical products are coming off-patent in the near future.
- The challenge for generic manufacturers is to develop validated chromatographic methods for some of these drugs (*viz.* lamotrigine, lansoprazole, levofloxacin, losartan potassium, desloratadine, orlistat and topiramate).
- In this era of high throughput analysis, the need to obtain shorter retention times while maintaining or improving resolution from closely eluting impurities is very important for quality control analysis.
- The availability of a column capable of separating a number of ingredients having a wide variety of hydrophobicities is useful.

- We used the following reversed phase columns to analyze a number of drugs: TSKgel ODS-140HTP, 2.3µm, 2.1mm ID x 5cm column and TSKgel ODS-140HTP, 2.3µm, 2.1mm ID x 10cm column.
- We report the separation of a number of drugs coming off patent in 2009 and in the coming years using a TSKgel ODS-140HTP column.
- Additional studies like forced degradation, determination of limit of detection and of quantitation, calibration curve, etc. are reported for lamotrigine.
- High throughput separation of these drugs using a conventional HPLC with an upper pressure limit of 41.4MPa is valuable in method development for the identification of ingredients, stability studies and quality control.

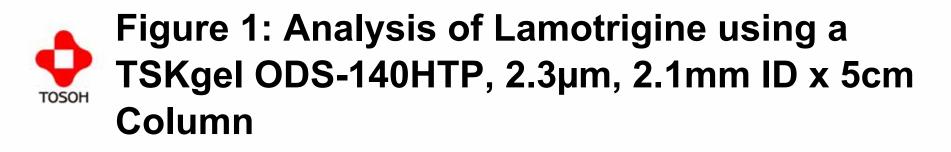
LC System:	HP-1100 HPLC with Chemstation (ver B.03.01)			
Columns:	TSKgel ODS-140HTP, 2.3mm, 2.1mm ID x 5cm TSKgel ODS-140HTP, 2.3mm, 2.1mm ID x 10cm			
Mobile Phase:	as indicated in each chromatogram			
Temperature:	40°C			
Injection volume:	10µL			
Detection:	UV@215 nm			
Flow rate:	as noted			

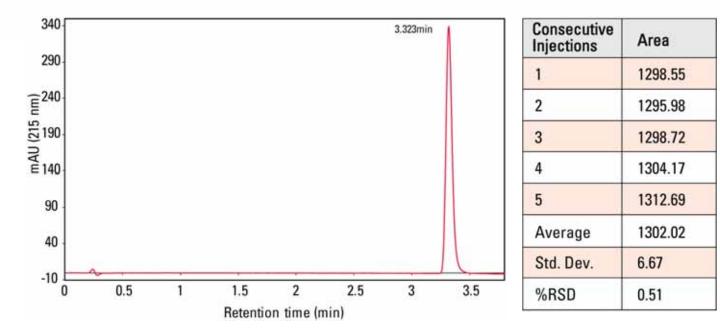
- High purity Sigma-Aldrich brand chemicals were used for the preparation of stock solutions of drug substances.
- Stock solutions were prepared either in water or methanol as required and stored at -20°C.
- Working standards were prepared by dilution of the stock solutions in water.
- All the standards and the samples were filtered through a 0.45µm membrane filter prior to injection.

Material and Methods Continued

- The limit of detection (LOD) is one of the limit tests defined as the lowest concentration of the analyte in a sample that can be detected, but not necessarily be quantitated, under the stated experimental conditions mentioned.
- LOD is determined by the following USP method:
 - The standard deviation of the response (mAU) of the baseline is calculated during a blank injection.
 - The standard deviation is multiplied by a factor of 2 to provide an estimate of the limit of detection (mAU).
 - The limit of detection is subsequently confirmed by the analysis of the sample near that calculated limit.
 - For the determination of the limit of quantitation (LOQ), the standard deviation of the blank injection is multiplied by a factor of 10.

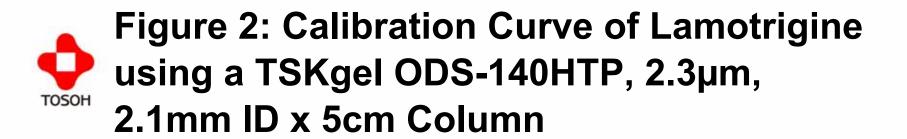
Properties of TSK-GEL ODS-140HTP Columns

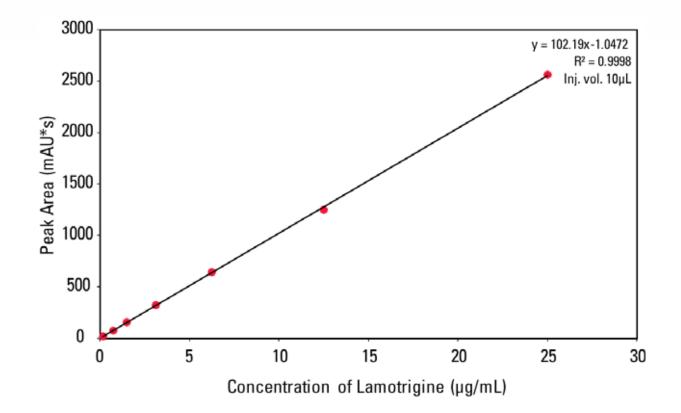

	TSK-GEL ODS-140HTP		
Carbon Content	8%		
Endcapped	Yes ⁽¹⁾		
Particle Size (µm)	2.3		
Pore Size (Å)	140		
Preferred Sample Type	Hydrophobic		
Bonded Phase Structure	Polymeric		
Specific Surface Area (m²/g)			
*Asymmetry Factor (10%)	0.90 - 1.3		
*Theoretical Plates	>14,000		


- based on naphthalene peak.
- ⁽¹⁾ Prepared by bonding the surface with a difunctional octadecylsilane reagent, followed by repeated endcapping with monofunctional trimethylsilane reagent.

Off-patent Drug Schedule

Drug Standards	Generic Name	Class	Mechanism of Action	Disease	Degradation Products	Year going off patent
Levofloxacin LEV	Levaquine	Ofloxacin, quinolone	synthetic broad- spectrum antibacterial agent	Bacterial Infection	Decarboxy ofloxacin, 9-piperazino ofloxacin, des-methyl ofloxacin, ofloxacin-N-oxide	2011
Lamotrigine LTG	Lamictal™	Phenyl Triazine		Anti-epileptic	Arene oxides, N-chloro products by HOCI, N-oxide	2009
Desloratadine DSL	Clarinex™, Claramax, Neo-Clarityn, Aerius™	Tricyclic Antihistamine	Peripheral H1 receptor antagonist	Allergy		2009
Lansoprazole LSP		Omeprazole	protein pump inhibitor		5 metabolites-acid degradation	2009
Losartan Potassium LOP	Cozaar™		angiotensin II receptor (AT1) antagonist.	Hypertension	Imidazole ring breaks down by photo- degradation or by UV	2010
Topiramate			anticonvulsant drug			

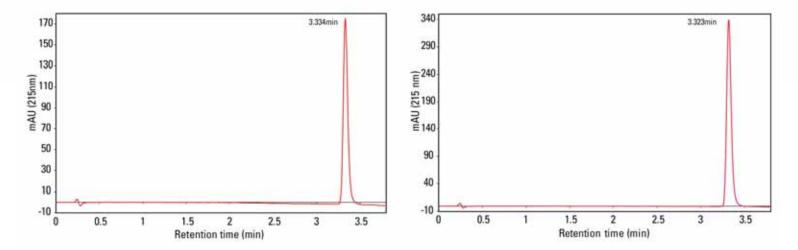



Lamotrigine was eluted as a sharp peak using a linear gradient. The very low %RSD value over 5 consecutive injections shows the efficiency of the method.

Mobile phase: A: H₂O + 0.15% TFA B: 100% ACN with 0.15% TFA

15 minute linear gradient from 4% A – 100% B

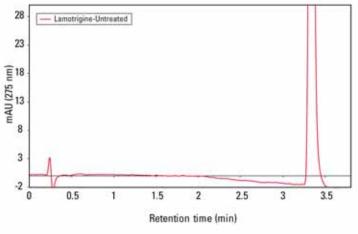
Flow rate: 0.8mL/min

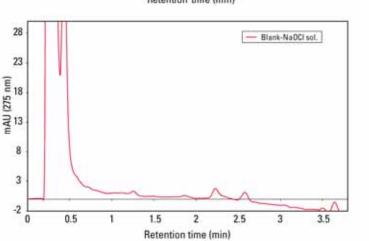


Calibration was found to be linear in the concentration range of 2 – 20µg/mL

TOSOH BIOSCIENCE

Figure 3: Precision Study using a TSKgel ODS-140HTP, 2.3µm, 2.1mm ID x 5cm Column


Day	Retention Time (min)		
1	3.33		
2	3.29		
3	3.32		
4	3.31		
5	3.28		
Average	3.31		
Std. Dev.	0.02		
%RSD	0.62		


The analysis showed a considerable precision in retention time when analyzed at different times of the day, as shown in the chromatograms above.

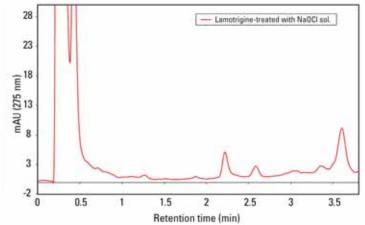
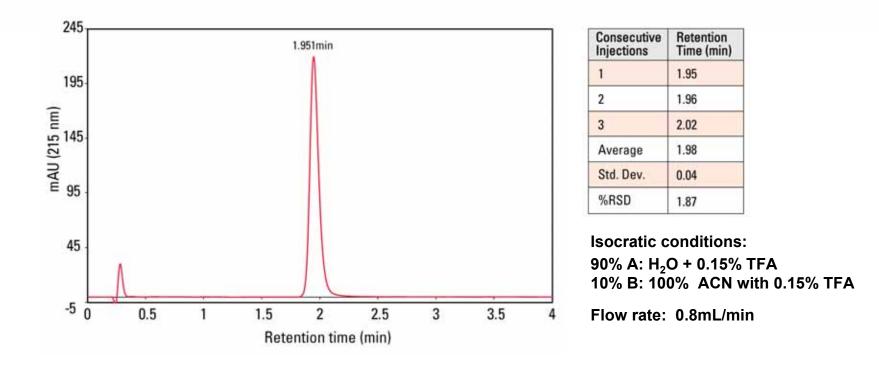
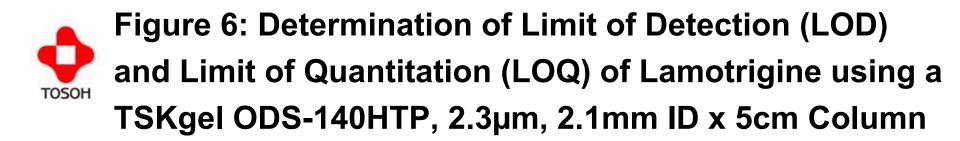

Analysis of the sample on 5 different days over a span of 2 months showed a very consistent elution profile. %RSD of the retention times obtained over this period are shown in the table.

Figure 4: Oxidation of Lamotrigine by NaOCI Solution using a TSKgel ODS-140HTP, 2.3µm, 2.1mm ID x 5cm Column




- Lamotrigine is known to form two different *N*chloro products by NaOCI solution (6%) identified by Xray crystallography. Ref: DMD 35:1050–1056, 2007
- Lamotrigine (25µg/mL; 750µL) in mobile phase A treated with 750µL of 6% NaOCI solution for 1min Final concentration of Lamotrigine is 12.5µg/mL.
- Upon NaOCI treatment the lamotrigine peak disappeared.
- Further study is in progress to isolate and identify the degradation products.

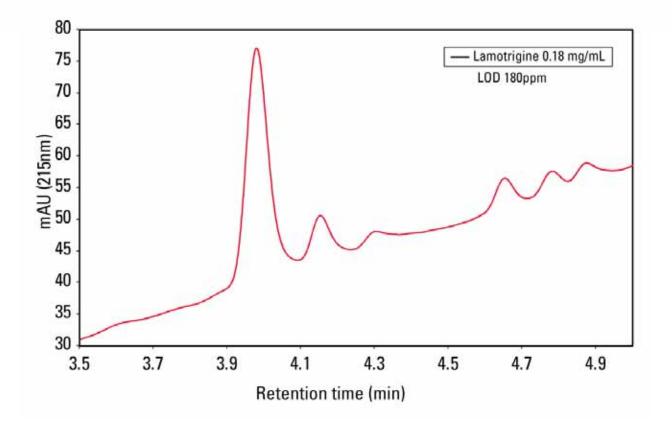
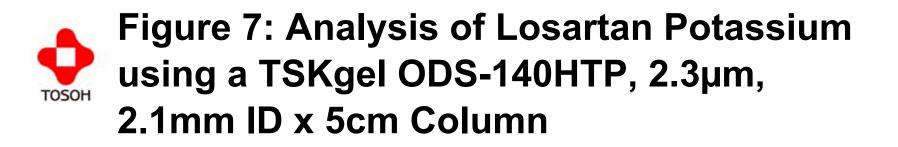
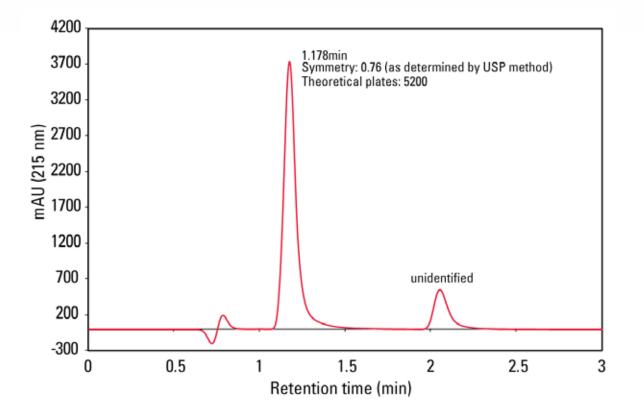


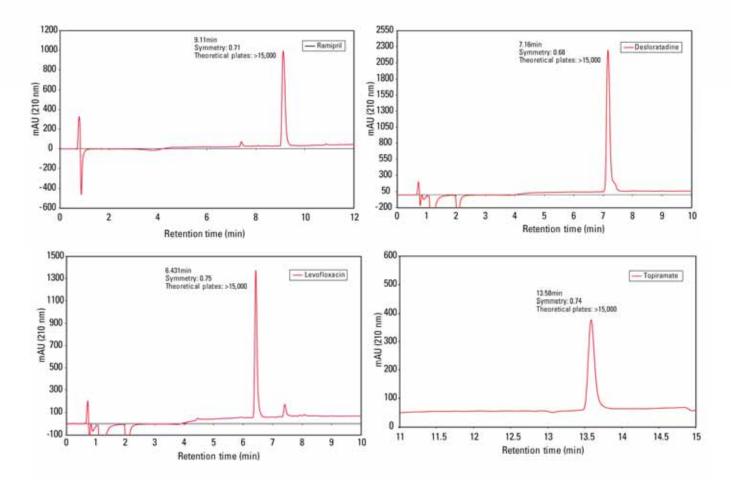
Figure 5: Isocratic Elution of Lamotrigine using a TSKgel ODS-140HTP, 2.3µm, 2.1mm ID x 5cm Column


Lamotrigine could be separated with low retention time (< 2 minutes), good symmetry and high theoretical plate values.



Limit of detection of lamotrigine was found to be 180ppm and LOQ 1800ppm.

TOSOH BIOSCIENCE



Losartan Potassium could be separated within 2 minutes with high symmetry.

TOSOH BIOSCIENCE

Figure 8: Analysis of Ramipril, Desloratadine, Levofloxacine, and Topiramate using a TSKgel ODS- 140HTP, 2.3μm, 2.1mm ID x 10cm Column

Mobile phase:

A: H₂O + 0.15% TFA B: 100% ACN with 0.15% TFA

15 minute linear gradient from 4% A – 100% B

Flow rate:

0.4mL/min for Ramipril, Desloratadine, Levofloxacin

0.3mL/min for Topiramate

Preliminary studies show that a TSKgel ODS-140HTP, 10cm column could be used to separate these drugs. Further study in improving the profile in relation to retention time and symmetry is in progress.

TOSOH BIOSCIENCE

TOSOH

Poster # ANYL 187, Presented at ACS 2009, Washington, DC, USA 16

In this study a TSKgel ODS-140HTP column was very useful for

- (a) the analyses of several drugs with a wide variety of hydrophobicities which will soon come off patent,
- (b) efficient method development,
- (c) and in reducing cost and organic waste by decreasing the run times.